
10 General relativistic models for space-time coordinates and

equations of motion

10.1 Time coordinates

IAU resolution A4 (1991) set the framework presently used to define the Barycentric Reference
System (BRS) and the Geocentric Reference System (GRS). Its third recommendation defined
Barycentric Coordinate Time (TCB) and Geocentric Coordinate Time (TCG) as time coordinates
of the BRS and GRS, respectively. In the fourth recommendation another time coordinate is
defined for the GRS, namely Terrestrial Time (TT). This framework was further refined by the
IAU Resolutions B1.3 and B1.4 (2000) to provide consistent definitions for the coordinates and
the metric tensor of the reference systems at the full post-Newtonian level (Soffel, 2000). The
BRS was renamed Barycentric Celestial Reference System (BCRS) and the GRS was renamed
Geocentric Celestial Reference System (GCRS). At the same time IAU Resolution B1.5 (2000)
applied this framework to time coordinates and time transformations between reference systems,
and IAU Resolution B1.9 (2000) re-defined Terrestrial Time (Petit, 2000). TT differs from TCG
by a constant rate, dTT/dTCG = 1−LG, where LG = 6.969290134× 10−10 is a defining constant
(see Chapter 1 Table 1.1). The value of LG has been chosen to provide continuity with the former
definition of TT, i.e. that the unit of measurement of TT agrees with the SI second on the geoid.
The difference between TCG and TT is equal to

TCG− TT =
(

LG

1− LG

)
× (JDTT − T0)× 86400 s, (10.1)

where JDTT is the TT Julian date and T0 = 2443144.5003725. To within 10−18 in rate, it may be
approximated as TCG− TT = LG× (MJD−43144.0)×86400 s where MJD refers to the modified
Julian date of International Atomic Time (TAI). TAI is a realization of TT, apart from a constant
offset: TT = TAI + 32.184 s.

Before 1991, previous IAU definitions of the time coordinates in the barycentric and geocentric
frames required that only periodic differences exist between Barycentric Dynamical Time (TDB)
and Terrestrial Dynamical Time (TDT; Kaplan, 1981). As a consequence, the spatial coordinates
in the barycentric frame had to be rescaled to keep the speed of light unchanged between the
barycentric and the geocentric frames (Misner, 1982; Hellings, 1986). In these systems, a quantity
with the dimension of time or length has a TDB-compatible value which differs from its TDT-
compatible value by a scale (see also Chapter 1). This is no longer required with the use of the
TCG/TCB time scales.

The relation between TCB and TDB is linear, but no precise definition of TDB had been provided
by the IAU. In the IERS Conventions (2003) the relation was given in seconds by

TCB− TDB = LB × (MJD− 43144.0)× 86400 s + P0, P0 ≈ 6.55× 10−5s, (10.2)

with the provision that no definitive value of LB exists and such an expression should be used with
caution.

In order to remove this ambiguity while keeping consistency with the time scale (formerly known
as Teph) used in the Jet Propulsion Laboratory (JPL) solar-system ephemerides (see Chapter 3)
and with existing TDB implementations such as (Fairhead and Bretagnon, 1990), IAU Resolution
B3 (2006) was passed to re-define TDB as the following linear transformation of TCB:

TDB = TCB− LB × (JDTCB − T0)× 86400 s + TDB0, (10.3)

where JDTCB is the TCB Julian date and where LB = 1.550519768× 10−8 and TDB0 = −6.55×
10−5s are defining constants (see Chapter 1 Table 1.1).

Figure 10.1 shows graphically the relationships between the time scales. See <1> for copies of
the resolutions of the IAU General Assemblies (1991, 2000, 2006) relating to reference systems

1http://www.iau.org/administration/resolutions/general assemblies/
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and time coordinates. IAU Resolution A4 (1991) may also be found in IERS Technical Note 13,
pp. 137–142, IAU Resolutions B1 and B2 (2000) in IERS Technical Note 32, pp. 117–126, and
Resolutions of the 26th IAU General Assembly (2006) in Appendix A of this document.
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Figure 10.1: Various relativistic time scales and their relations. Each of the coordinate time scales
TCB, TCG, TT and TDB can be related to the proper time τ of an observer, provided
that the trajectory of the observer in the BCRS and/or GCRS is known. Transformations
shown as dashed lines are not explicitly described in this document.

The difference between Barycentric Coordinate Time (TCB) and Geocentric Coordinate Time
(TCG) for any event (TCB, ~x) in the barycentric frame involves a four-dimensional transformation,

TCB− TCG = c−2

{∫ t

t0

[
v2

e

2
+ Uext(~xe)]dt + ~ve · (~x− ~xe)

}
+ O(c−4), (10.4)

where ~xe and ~ve denote the barycentric position and velocity of the Earth’s center of mass, and
Uext is the Newtonian potential of all of the solar system bodies apart from the Earth evaluated
at the geocenter. In this formula, t is TCB and t0 is chosen to be consistent with 1977 January 1,
0h0m0s TAI, i.e. the value T0 = 2443144.5003725 given above. Terms not specified in (10.4) are
of order 10−16 in rate, and IAU Resolution B1.5 (2000) provides formulas to compute the O(c−4)
terms and Equation (10.4) within given uncertainty limits up to 50000 km from the Earth.

The TCB−TCG formula (10.4) may be expressed as

TCB− TCG =
LC × (TT − T0) + P (TT )− P (T0)

1− LB
+ c−2 ~ve · (~x− ~xe) (10.5)

where the values of LC and LB may be found in Chapter 1 Table 1.1. Non-linear terms denoted
by P (TT ) have a maximum amplitude of around 1.6 ms.

Any of the recent solar system ephemerides mentioned in Chapter 3 could be numerically integrated
to obtain a realization of Equation (10.4) with ns accuracy, see e.g. (Fienga et al., 2009) for
INPOP08. For consistency with past versions of this document, we provide in the following different
realizations of Equation (10.5):

• The terms P (TT ) − P (T0) may be provided by a numerical time ephemeris such as TE405
(Irwin and Fukushima, 1999), with an accuracy of 0.1 ns from 1600 to 2200. TE405 is available
in a Chebyshev form at <2> and at the IERS Conventions Center website <3>. A similar
product for the INPOP08 ephemeris (Fienga et al., 2009) is available at <4>.

• The terms P (TT ) can be evaluated by the “FB” analytical model (Fairhead and Bretagnon,
1990; Bretagnon 2001). The 2001 version of the FB model is available at the IERS Con-
ventions Center website <3> or <5>, where the files of interest are fb2001.f, fb2001.dat,

2ftp://astroftp.phys.uvic.ca/pub/irwin/tephemeris
3ftp://tai.bipm.org/iers/conv2010/chapter10/software/
4http://www.imcce.fr/inpop/
5ftp://maia.usno.navy.mil/conv2010/chapter10/software
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fb2001.in, fb2001.out, and README.fb2001.f. The SOFA (Standards of Fundamental As-
tronomy) service <6> also provides a routine iau DTDB in both Fortran 77 and ANSI C to
perform the computation, based on a less accurate version of the FB model.

• A series, HF2002, providing the value of LC × (TT − T0) + P (TT ) − P (T0) as a function of
TT over the years 1600–2200 has been fit (Harada and Fukushima, 2002) to TE405. The
HF2002 model is available at the IERS Conventions Center website <3>, where the files of
interest are xhf2002.f, HF2002.DAT and xhf2002.out (However, see below the updated version
XHF2002 IERS.F).

Note that TE405 is an integration of Equation (10.4) and does not account for terms in c−4,
and neither does HF2002 which was fit to TE405. On the other hand, the LC value provided in
Chapter 1 Table 1.1 includes a 1.15 × 10−16 contribution from terms in c−4 and from the effect
of asteroids. For best accuracy, the linear term 1.15× 10−16 × (TT − T0) should be added to the
original TE405 and HF2002 results. For convenience, a version XHF2002 IERS.F is provided at
<3>, that directly provides the correct result of Equation (10.5) based on HF2002 and can be
considered as the conventional TCB-TCG transformation.

Irwin (2003) has shown that TE405 and the 2001 version of the FB model differ by less than 15
ns over the years 1600 to 2200 and by only a few ns over several decades around the present time.
HF2002 has been shown (Harada and Fukushima, 2002) to differ from TE405 by less than 3 ns
over the years 1600–2200 with an RMS error of 0.5 ns. Note that in this section TT is assumed
to be the time argument for computing TCB−TCG, while the actual time argument is that of
the underlying solar-system ephemerides, i.e. a realization of TDB (see Chapter 3). The resulting
error in TCB−TCG is at most approximately 20 ps.

10.2 Transformation between proper time and coordinate time in the vicin-
ity of the Earth

Similarly to the time coordinate transformation, the formalism of the IAU resolutions is used to
provide the transformation between the proper time of a clock and coordinate time. Formulas and
references are presented here to perform this transformation in the vicinity of the Earth (typically
up to geosynchronous orbit or slightly above). Evaluating the contributions of the higher order
terms in the metric of the geocentric reference system (see IAU Resolution B1.3 (2000)), it is found
that the IAU 1991 framework is sufficient for time and frequency applications in the GCRS in light
of present clock accuracies. Nevertheless, in applying the IAU 1991 formalism, some care needs
to be taken when evaluating the Earth’s potential at the location of the clock, especially when
accuracy of order 10−18 is required (Klioner, 1992; Wolf and Petit, 1995; Petit and Wolf, 1997;
Soffel et al., 2003).

In this framework, the proper time of a clock A located at the GCRS coordinate position xA(t),
and moving with the coordinate velocity vA = dxA/dt, where t is TCG, is

dτA

dt
= 1− 1/c2

[
v2

A/2 + UE(xA) + V (XA)− V (XE)− xi
A∂iV (XE)

]
. (10.6)

Here, UE denotes the Newtonian potential of the Earth at the position xA of the clock in the
geocentric frame, and V is the sum of the Newtonian potentials of the other bodies (mainly the
Sun and the Moon) computed at a location X in barycentric coordinates, either at the position
XE of the Earth’s center of mass, or at the clock location XA. Only terms required for frequency
transfer with uncertainty of order 10−18 have been kept. For application to a given experiment,
one should also consider the time amplitude of terms in Equation (10.6) that happen to be periodic
and compare those terms to the expected time accuracy of the measurements. For example, the
contribution of tidal terms (the last three terms in Equation (10.6)) will be limited to below
1× 10−15 in frequency and a few ps in time amplitude up to the GPS orbit. In such cases, one can

6http://www.iausofa.org/
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keep only the first three terms in relation (10.6) between the proper time τA and the coordinate
time t:

dτA

dt
= 1− 1/c2

[
v2

A/2 + UE(xA)
]
. (10.7)

When using TT as coordinate time, following its defining relation dTT/dTCG = 1−LG, equations
(10.6) and (10.7) are rewritten with the same accuracy as

dτA

dTT
= 1 + LG − 1/c2

[
v2

A/2 + UE(xA) + V (XA)− V (XE)− xi
A∂iV (XE)

]
(10.8)

and

dτA

dTT
= 1 + LG − 1/c2

[
v2

A/2 + UE(xA)
]
, (10.9)

respectively. In general, the relation between the proper time of a clock and coordinate time may
be obtained by numerical integration of the adequate differential equation (10.6 to 10.9). In doing
so, care should be taken to evaluate the Newtonian potential UE with the uncertainty required by
each use.

For GPS satellites, with nearly circular orbits at an altitude of approximately 20200 km, the
combined relativistic frequency shift given by Equation (10.9) is about 4.5× 10−10 and it consists
of a constant offset of about 4.46 × 10−10 and periodical variations with amplitudes up to 10−11.
The constant relativistic frequency offset is nearly compensated simply by proportionally offsetting
the nominal frequency of all GPS satellite frequency standards by a conventional hardware offset
of −4.4647 × 10−10. However, due to differences of mean orbit altitudes of GPS satellites, the
actual relativistic frequency offsets for individual satellites can differ from the above conventional
hardware offset by up to 10−13.

When retaining only the first term of the Newtonian potential, assuming a Keplerian orbit and
that the constant relativistic offset is exactly compensated, integrating Equation (10.9) yields

TT = τA −∆τper
A , ∆τper

A = − 2
c2

√
a ·GM⊕ · e · sinE, (10.10)

where a, e and E are the orbit semi-major axis, eccentricity and eccentric anomaly angle. Thus
∆τper

A is the conventional GPS correction (see the GPS Interface Control Document available at
<7>) for the periodical relativity part, which is equally due to eccentricity induced velocity and
potential variations in Equation (10.9). From the above equation, one can readily see that the
amplitude of the periodical correction is proportional to the orbit eccentricity, i.e. equal to about
2.29µs×e. Since the eccentricity e for GPS orbits can reach up to 0.02, consequently the amplitude
of ∆τper

A can reach up to 46 ns. An alternative expression for the relativistic periodic correction is

∆τper
A = − 2

c2
vA · xA, (10.11)

which is exactly equivalent to the preceding Keplerian orbit formulation, provided that the oscu-
lating Keplerian orbit elements are used. This formulation is used e.g. by the IGS (International
GNSS Service) for its official GPS and GLONASS clock solution products.

By retaining also the oblateness term (J2) of the potential, one can derive (Ashby, 2003; Kouba,
2004) a simple analytical approximation that contains an apparent relativistic clock rate 8 and a

7http://www.navcen.uscg.gov/pdf/IS-GPS-200D.pdf
8Equation (28) in (Kouba, 2004) has a sign error for the (J2) rate term. The correct expression may be found in

Equation (85) of (Ashby, 2003).
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6-h term due to J2. Comparing to a complete numerical integration, Kouba (2004) finds that the
conventional periodic relativistic correction (10.11) differs by periodic terms with amplitudes of
about 0.1 and 0.2 ns, and periods of about 6 hours and 14 days, respectively, and that, for most
of the new (Block IIR) GPS satellites, the 6-h term is already detectable by statistical analysis in
the recent IGS final clock combinations. The deficiencies of the conventional relativistic correction
(10.10, 10.11) will become even more significant for Galileo (see the Galileo Interface Control
Document available at <9>) as the frequency instability of the Galileo passive Hydrogen maser
clocks is at a few parts in 1015 for an averaging time of several hours (Droz et al., 2009). As the
6-h J2 term is of similar magnitude, it should be accounted for when determining and using the
broadcast satellite clock model.

For low Earth orbit satellites (see e.g. Larson et al., 2007 for GRACE and TOPEX), the term in J2

is more important than at the GPS altitude so that Equation (10.11) may be significantly in error
or even completely misleading. It is necessary to perform a numerical integration of Equation (10.9)
using the term in J2 for the potential.

10.3 Equations of motion for an artificial Earth satellite10

The relativistic treatment of the near-Earth satellite orbit determination problem includes cor-
rections to the equations of motion, the time transformations, and the measurement model. The
two coordinate systems generally used when including relativity in near-Earth orbit determina-
tion solutions are the solar system barycentric frame of reference (BCRS) and the geocentric or
Earth-centered frame of reference (GCRS), see Section 5.1.

Ashby and Bertotti (1986) constructed a locally inertial E-frame in the neighborhood of the grav-
itating Earth and demonstrated that the gravitational effects of the Sun, Moon, and other planets
are basically reduced to their tidal forces, with very small relativistic corrections. Thus the main
relativistic effects on a near-Earth satellite are those described by the Schwarzschild field of the
Earth itself. This result makes the geocentric frame more suitable for describing the motion of a
near-Earth satellite (Ries et al., 1989). Later on, two advanced relativistic formalisms have been
elaborated to treat the problem of astronomical reference systems in the first post-Newtonian ap-
proximation of general relativity. One formalism is due to Brumberg and Kopeikin (Kopeikin,
1988; Brumberg and Kopeikin, 1989; Brumberg, 1991) and another one is due to Damour, Soffel
and Xu (Damour, Soffel, Xu, 1991, 1992, 1993, 1994). These allow a full post-Newtonian treatment
(Soffel, 2000) and form the basis of IAU Resolutions B1.3 and B1.4 (2000).

In the GCRS, the relativistic correction to the acceleration of an artificial Earth satellite is

∆~̈r = GME

c2r3

{[
2(β + γ)GME

r − γ~̇r · ~̇r
]
~r + 2(1 + γ)(~r · ~̇r)~̇r

}
+

(1 + γ)GME

c2r3

[
3
r2 (~r × ~̇r)(~r · ~J) + (~̇r × ~J)

]
+{

(1 + 2γ)
[

~̇R×
(
−GMS

~R
c2R3

)]
× ~̇r

}
,

(10.12)

where

9http://ec.europa.eu/enterprise/policies/satnav/galileo/open-service/
10The IAU Resolutions B1.3 and B1.4 (2000) and references therein now provide a consistent framework for the defi-

nition of the geocentric and barycentric reference systems at the full post-Newtonian level using harmonic coordinates.
The equations of motion for spherically-symmetric and uniformly rotating bodies in these systems are the same as those
previously derived in a Parameterized Post-Newtonian system.
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c = speed of light,

β, γ = PPN (parameterized post-Newtonian) parameters, equal to 1 in General
Relativity,

~r is the position of the satellite with respect to the Earth,
~R is the position of the Earth with respect to the Sun,
~J is the Earth’s angular momentum per unit mass

(| ~J | ∼= 9.8× 108m2/s), and

GME and GMS are the gravitational coefficients of the Earth and
Sun, respectively.

For satellites in the vicinity of the Earth (up to geostationary orbit) the terms in Equation (10.12)
can be evaluated with respect to the main Newtonian acceleration, as follows. The Schwarzschild
terms (first line) are a few parts in 1010 (high orbits) to 109 (low orbits) smaller; the effects of
Lense-Thirring precession (frame-dragging, second line) and the geodesic (de Sitter) precession
(third line) are about 1011 to 1012 smaller. The main effect of the Schwarzschild terms is a secular
shift in the argument of perigee while the Lense-Thirring and de Sitter terms cause a precession
of the orbital plane at a rate of the order of 0.8 mas/y (geostationary) to 180 mas/y (low orbit)
for Lense-Thirring and 19 mas/y (independent of orbit height) for de Sitter. The Lense-Thirring
terms are less important than the geodesic terms for orbits higher than Lageos (altitude above 6000
km) and more important for orbits lower than Lageos. The observable effects and their magnitude
depend on the particular characteristics of each satellite orbit and on the set-up of the analysis
software. E.g., neglecting the Schwarzschild terms while adjusting orbit parameters may cause an
apparent reduction of the orbit radius by 4 mm for circular orbits at all heights (Hugentobler,
2008).
The relativistic effects of the Earth’s oblateness have been neglected here as they are typically
even smaller but, if necessary, they could be included using the full post-Newtonian framework
of IAU Resolutions B1.3 and B1.4 (2000). The independent variable of the satellite equations of
motion may be, depending on the time transformation being used, either TT or TCG. Although
the distinction is not essential to compute this relativistic correction, it is important to account
for it properly in the Newtonian part of the acceleration.

10.4 Equations of motion in the barycentric frame (see footnote 10)

The n-body equations of motion for the solar system frame of reference (the isotropic Parameterized
Post-Newtonian system with Barycentric Coordinate Time (TCB) as the time coordinate) are
required to describe the dynamics of the solar system and artificial probes moving about the solar
system (for example, see Moyer, 1971). These are the equations applied to the Moon’s motion for
lunar laser ranging (Newhall et al., 1987). In addition, relativistic corrections to the laser range
measurement, the data timing, and the station coordinates are required (see Chapter 11).
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